

Integrated Modeling Methodology Validation Using the Micro-Precision Interferometer Testbed

James W. Melody Gregory W. Neat

Presented at the 35^{th} IEEE Conference on Decision and Control Kobe, Japan December 13, 1996

- Integrated modeling description and tools
- Micro-precision interferometer testbed
- MPI integrated model
- MPI testbed measurements
- Validation metric
- Results

- Integrated modeling refers to modeling of controls, optics, and structures in a uniform software environment.
- Integrated modeling enables true multi-disciplinary:
 - Analysis
 - Design
 - Optimization
 - Diagnosis
- Integrated modeling is essential for spaceborne interferometry spacecraft and mission design:
 - Interferometer performance prediction in the presence of mechanical disturbances (nanometer stability requirements)
 - Requirements flow-down
 - Design trades

- Integrated Modeling of Optical Systems (IMOS) software package:
 - Matlab toolbox that enables structural and optical modeling
 - Includes functions for model integration
 - Utilizes plethora of Matlab controls and analysis functions
- Controlled Optics Modelling Package (COMP):
 - FORTRAN-compiled, stand-alone program for sophisticated optical modeling (e.g., diffraction and image synthesis)
 - Maintains compatibility with structural and controls models.
 - Interfaces easily with IMOS.
- IMOS and COMP have been used to evaluate *conceptual designs* of many interferometry missions: SIM, SONATA, OSI, POINTS, DLI, SITE, ISIS.
- Novel modeling methodology must be validated in order to have confidence in spacecraft and mission analyses.

Finite Element Geometry

- Structural model specified in IMOS.
- Structural model consists of plate, beam, truss, and rigid body elements (RBEs).
- 2,577 total dofs: 1,832 independent w.r.t. multi-point constraints
- Experimentally determined element properties consistent with validation of modeling methodology.

• Finite element description $(d \in \mathbb{R}^{2577})$:

$$M\ddot{d} + Kd = B_f f$$

• Incorporation of multi-point constraints from RBEs $(d_n \in R^{1832})$:

$$d = \begin{bmatrix} d_n \\ d_m \end{bmatrix} = Gd_n \implies M_{nn} \ddot{d}_n + K_{nn} d_n = B_{nf} f$$

- Optical prescription specifies shapes, positions, and orientations of optical elements.
- Prescription is specified in IMOS relative to the structural model, thereby easing model integration.
- Analytic differential ray trace (COMP) yields linear optical perturbation model:

$$y_{opt} = C_{opt} d$$

• Obtain eigensolution of FEM, (Ω, Φ_n) :

$$\ddot{\eta} + 2Z\Omega\dot{\eta} + \Omega^2 \eta = \Phi_n^T B_{nf} f$$

$$d = G \Phi_n \eta$$

with diagonal modal damping, Z, experimentally obtained from the testbed.

 Truncate modes above expected disturbance bandwidth (900 Hz), and convert to first-order model:

$$x = \begin{bmatrix} \eta_k \\ \dot{\eta_k} \end{bmatrix} \Rightarrow \begin{cases} \dot{x} = Ax + Bf \\ d = C_d x \end{cases}$$

with the subscript k referring to the set of 622 kept modes.

• Incorporate linear optical model:

$$y_{opt} = C_{opt} C_d x \Rightarrow \begin{cases} \dot{x} = Ax + Bf \\ y_{opt} = Cx \end{cases}$$

- Resultant model is amenable to analysis with existing Matlab functions.
 - Input: forces at disturbance location
 - Output: stellar optical pathlength difference

• Typically, disturbance has broadband PSD, $\Phi_d(\omega)$, and the performance measure is OPD variation, σ_{opd} :

$$\sigma_{opd}^2 = \frac{1}{\pi} \int_0^\infty |G(j\omega)|^2 \Phi_d(\omega) d\omega$$

- ullet Generally, an accuracy of a **factor of two** in σ_{opd} is desired.
- Use a bandlimited white noise disturbance to characterize the accuracy of the predicted transfer functions in the frequency range of interest ($[\omega_1, \omega_2]$):

$$\sigma_g^2 = \frac{1}{\pi} \int_{\omega_1}^{\omega_2} |G(j\omega)|^2 d\omega$$

ullet Apply the factor of two desirement to the ratio of σ_g for the predicted and measured transfer functions:

$$\frac{1}{2} \le \frac{\sigma_{gp}}{\sigma_{gm}} \le 2$$

Disturbance		σ_g				
Input		4 - 10 Hz	10 - 100 Hz	100 - 900 Hz	4 - 900 Hz	
x-axis	measured	997	541	70	1,137	
Force	predicted	666	1,025	22	1,223	
	factor	0.67	1.89	0.32	1.08	
y-axis	measured	1,313	360	69	1,363	
Force	predicted	864	522	24	1,010	
	factor	0.66	1.45	0.35	0.74	
z-axis	measured	185	346	50	395	
Force	predicted	177	591	47	619	
	factor	0.95	1.71	0.95	1.57	

Note: units are absent since the *separate* values are not meaningful. It is the *ratio* that is significant.

- Validate disturbance torque transfer functions
 - Torques not yet included because of bad measurement approach: torques generated by tandem force shakers.
 - Measurement will be improved by fabrication of torque shaker.
- Validate for various CSI vibration attenuation layers
 - Active optics (draft submitted to ACC 97)
 - Active optics and isolation
- Determine, in retrospect, how much parameter identification and/or model fidelity is needed for valid model.
 - Simple beam model of structure.
 - Rod model of truss structure.
 - Structural model before various parameter identification.
- Time domain validation for particular RWA disturbance input.
 - In lab, generate RWA disturbance for several wheel speeds and measure resultant OPD. Compare with predicted OPD.
 - Combines validation and performance prediction efforts.

Supporting Vugraphs

Disturbance		σ_g				
Input		4 - 10 Hz	10 - 100 Hz	100 - 900 Hz	4 - 900 Hz	
x-axis	measured	196	201	335	437	
Torque	predicted	44	471	175	504	
	factor	0.23	2.34	0.52	1.15	
y-axis	measured	1,667	201	241	1,697	
Torque	predicted	1,065	542	199	1,212	
	factor	0.64	2.70	0.82	0.71	
z-axis	measured	1,292	499	349	1,429	
Torque	predicted	219	682	73	720	
	factor	0.17	1.37	0.21	0.50	

Note: units are absent since the *separate* values are not meaningful. It is the *ratio* that is significant.